Délmagyar logó

2018. 07. 20. péntek - Illés 18°C | 28°C Még több cikk.

Először sikerült meghatározni hatalmas energiájú neutrínók egyik forrását

Először sikerült meghatározniuk a kutatóknak a Naprendszeren kívüli, hatalmas energiájú neutrínók egyik keletkezési helyét a világűrben.
Először sikerült meghatározniuk a kutatóknak a Naprendszeren kívüli, hatalmas energiájú neutrínók egyik keletkezési helyét a világűrben. Az Antarktiszon működő IceCube (Jégkocka) neutrínóobszervatórium kutatói a Déli-sarkvidék érintetlen jegében észlelték a nagy energiájú neutrínókat.

Az elemi részecskék űrbéli útját visszakövetve aztán eljutottak egy hatalmas elliptikus galaxishoz (blazár) - belsejében egy masszív, gyorsan forgó fekete lyukkal -, amely 3,7 milliárd fényévre található a Földtől. "A neutrínók új ablakot nyitnak számunkra az univerzum megismeréséhez" - mondta Darren Grant, a kanadai Albertai Egyetem fizikusa. A szakember szerint a neutrínók sok szempontból a természet tökéletes csillagászati hírvivői. Könnyedén elszabadulnak keletkezési helyükről és az egész kozmoszon át magukkal hozzák a tudomány számára rendkívül értékes információkat keletkezésük körülményeiről (impulzus, energia, a keletkezési helyhez mutató irány).

A Science című tudományos folyóiratban publikált friss eredményekkel a világegyetemen átszáguldó neutrínók és kozmikus sugarak forrásának - a tudósokat 1912 óta foglalkoztató - rejtélye oldódott meg. A jelek szerint mindkettő az univerzum legzordabb szegleteiből származik. A Wisconsini Egyetem fizikusa, Francis Halzen, a neutrínóobszervatórium vezető kutatója szerint ugyan a hatalmas energiájú neutrínók és a kozmikus sugarak forrása közös, mégis óriási különbség közöttük, hogy a töltött részecskékkel teli kozmikus sugárzás útját nem lehet közvetlenül visszakövetni a forrásig, mivel az űrben lévő erős mágneses mezők befolyásolják a pályáját.

Ezzel szemben a neutrínónak nincs elektromos töltése, semleges, emiatt elektromágneses kölcsönhatásban sem vesz részt. Ez a magyarázata annak, hogy a neutrínó rendkívül közömbös az anyaggal szemben: egy fényév vastagságú ólomfalon a neutrínóknak mintegy fele haladna át úgy, hogy akár egyetlen atommal ütközne.

Mindennek köszönhetően keletkezési helyétől egyenes vonalban érkezik meg a detektorhoz. Az egy köbkilométeres Jégkocka több mint ötezer szenzora az Antarktisz jegét felhasználva 1,5-2,4 kilométer mélyen detektálja a részecskét. A Jégkocka által vizsgált területen trilliónyi neutrínó halad át, és amikor egyikük ütközik egy oxigénatommal a jégben, kék fény keletkezik.

A tudósok a fényvillanás alapján számítják ki, hogy milyen iránya és energiája volt a neutrínónak, amikor a detektorba lépett. A mostani felfedezéshez vezető észlelés 2017. szeptember 22-én történt, majd a szakemberek elkezdték visszakövetni a neutrínó útját egészen a blazárig. A kutatók később megállapították, hogy a Jégkocka révén korábban észlelt neutrínók egy részének is ugyanez a blazár volt a forrása.

Neutrínók többféle forrásból is származhatnak, a tudósok a távoli világegyetemből érkezők mellett megkülönböztetnek mesterséges (atomerőművekben keletkező), földi (terresztrális), légköri (atmoszferikus) és napneutrínókat (szoláris neutrínók). Grant szerint valószínűleg nem a blazárok az egyedüli forrásai a világegyetem messzi részeiből érkező hatalmas energiájú neutrínóknak, vagy nagy energiájú kozmikus sugaraknak, hanem más aktív galaxismagok, kvazárok, gammakitörések és szupernóvák is lehetnek a forrásaik.

hirdetés

Kövessen minket, kommentelje híreinket a Delmagyar.hu Facebook oldalán!

hirdetés

hirdetés

A címoldal témái

Önnek ajánljuk

Földrengés utáni szenzációs felfedezés Mexikóban

Földrengés utáni szenzációs felfedezés Mexikóban
Egy ősi templom maradványaira bukkantak Mexikóban tavaly a földrengés után egy azték piramis… Tovább olvasom